Predicting the returns of the US real estate investment trust market: evidence from the group method of data handling neural network

نویسندگان

چکیده

Abstract Purpose The Group Method of Data Handling (GMDH) neural network has demonstrated good performance in data mining, prediction, and optimization. Scholars have used it to forecast stock real estate investment trust (REIT) returns some countries region, but not the United States (US) REIT market. primary goal this study is predict US market using GMDH then compare its accuracy with that derived from traditional prediction method. Design/methodology/approach To return on index, generalized autoregressive conditional heteroscedasticity (GARCH) model. In test, training samples, testing kernel functions model are controlled investigate their impact machine learning approach. Corresponding experiments were performed GARCH model, accuracies these two approaches compared. Findings Compared GARCH, GMDH’s much higher, indicating approach can provide a highly accurate prices. size samples affect results. particular, function significant accuracy. linear covariance simple train yield predictions, whereas quadratic difficult train. Even small outperform Research limitations/implications Although shows predicting return, still black-box algorithm for financial analysts develop customize. come market, which world’s largest most liquid Social implications This research outperforms forecasting returns. Hence, investors use make more predictions target REITs’ thus better decisions. Future researchers may REITs other markets. Originality/value first apply determine factors performance. For example, discusses network. It also includes short-term daily previously considered, making valuable reference industry analysts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effect of traffic density on the accident externality from driving the case study of tehran

در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...

15 صفحه اول

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

“the effect of risk aversion on the demand for life insurance: the case of iranian life insurance market”

abstract: about 60% of total premium of insurance industry is pertained?to life policies in the world; while the life insurance total premium in iran is less than 6% of total premium in insurance industry in 2008 (sigma, no 3/2009). among the reasons that discourage the life insurance industry is the problem of adverse selection. adverse selection theory describes a situation where the inf...

15 صفحه اول

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Financial Innovation

سال: 2023

ISSN: ['2199-4730']

DOI: https://doi.org/10.1186/s40854-023-00486-2